BACHELOR OF SCIENCE IN APPLIED SCIENCE IN MECHANICAL ENGINEERING TECHNOLOGY

Students who have earned the associate degree may elect to complete the bachelor's degree on either a full- or part-time basis. Courses in the bachelor's degree program further develop technical, communication, and managerial skills. Upon successful completion of the coursework, graduates are awarded the Bachelor of Science in Applied Science degree and are prepared for greater levels of responsibility and greater career advancement.

Graduates of the BSAS degree program obtain employment as engineers or engineering designers for government agencies, consulting engineers and architects, industry and manufacturing, and contractors. Because their education is more extensive, they are prepared for more responsibility and more-rapid advancement. BSAS engineers and designers plan, design, and inspect production and maintenance activities.

Based on an evaluation of their work, transfer students who have a related associate degree from a regionally accredited institution may be admitted to the bachelor's degree program at the junior level.

Program Educational Objectives

Educational objectives for the mechanical engineering technology programs have been developed by faculty and the program industrial advisory committee to support the university, the college, and the School of Engineering Technology missions. Graduates of the MET associate degree program function as assistants in the design, drafting and testing of mechanical products, equipment and processes. Bachelor's degree graduates assume greater responsibility in the design and testing of mechanical products, processes, and equipment.

During their first few years after completion of the mechanical engineering technology program at YSU, graduates will have demonstrated the ability to:

- Work competently in technical and professional careers related to the field of mechanical engineering technology.
- · Communicate effectively in a professional environment.
- · Continue growth in professional knowledge and skills.
- Achieve recognition and/or compensation consistent with their educational achievements.

Accreditation

The Bachelor of Science in Applied Science in Mechanical Engineering Technology is accredited by the Engineering Technology Accreditation Commission of ABET, https://www.abet.org/, under the General Criteria and the Program Criteria for Mechanical Engineering Technology.

Date of last campus visit: October 2024 Accredited through: 2030 Next campus visit: October 2029

COURSE	TITLE	S.H.
FIRST YEAR REQU	IREMENT - STUDENT SUCCESS	
YSU 1500	Success Seminar	1-2
or YSU 1500S	Youngstown State University Success Seminar	
or HONR 1500	Intro to Honors	
General Education Courses		
Writing		
ENGL 1550	Writing 1	3-4

or ENGL 1549	Writing 1 with Support	
ENGL 1551	Writing 2	3
Math		
MATH 1513	Algebra and Transcendental Function	5-10
or MATH 1510 and	1511	
or MATH 1510C and	d 1511C	
Natural Science		
CHEM 1515	General Chemistry 1	3
CHEM 1515L	General Chemistry 1 Laboratory	1
PHYS 1501	Fundamentals of Physics 1	4
or PHYS 2610	General Physics 1	
GER Arts and Huma	anities	6
GER Social Science	2	6
General Education I	Electives	
MATH 1570	Applied Calculus 1	4
or MATH 1571	Calculus 1	
Two Additional Gen	Ed Electives from any topic	6
Courses in the Majo		
CCET 2604	Properties and Strength of Materials	3
CCET 2614L	Materials Laboratory 1	2
EET 3712	Programmable Logic Controllers	4
& 3712L	and PLC Laboratory	2
EET 3715	Industrial Instrumentation and Control	3
EET 3725 & 3725L	Electromechanical Systems and Electromechanical Systems Lab	4
ENTC 1505	Engineering Technology Concepts	4
ENGR 1550 and EN		
MET 1515	Mechanics 1	3
MET 2606	Solid Modeling	4
MET 2607	Geometric Dimensioning and Tolerancing	3
MET 2616	Mechanics 2	3
MET 2630	Manufacturing Techniques	3
MET 2630L	Manufacturing Techniques Laboratory	1
MET 3705	Thermodynamics	4
MET 3706	Machine Design 1	4
MET 3707	Machine Design 2	3
MET 3713	Fluid Power Systems	3
MET 3711	Heat and Power Cycles	4
MET 3714	Fluid Mechanics	4
& 3714L	and Fluid Mechanics Laboratory	
MET 3720	Mechanisms	3
MET 4810	Manufacturing Systems Analysis	3
MET 4820	Machine Systems	3
MET 4860 & 4860L	Robotics Technology and Robotics Technology Laboratory	3
MET 4870	Applied Finite Element Method	3
	et 6 hours from list below:	6
MET 3710	Tool Design	Ū
MET 4812	Numerical Control	
& 4812L	and Numerical Control Lab	
MET 4890	Special Topics in Mechanical Engineering Technology	
ENTC 4895	Independent Engineering Technology Project	
ISEN/MGT Elective	: Select 3 hours from list below:	3
ENT 3700	Entrepreneurship New Venture Creation	
ISEN 3720	Statistical Quality Control	
MGT 3725	Fundamentals of Management	
MGT 2604	Legal and Social Responsibilities of Business	

STEM 4890	STEM Internship	
Total Semester Ho	urs	125-132
Year 1		
Fall		S.H.
YSU 1500	Success Seminar	1-2
or SS 1500 or HONR 1500	or or Intro to Honors	
ENGL 1550	Writing 1	3-4
or ENGL 1549	or Writing 1 with Support	
ENTC 1505	Engineering Technology Concepts	4
or ENGR 1550 and	1560	
MATH 1513	Algebra and Transcendental Function	5-10
or MATH 1510 and	l 1511	
or MATH 1510C ar	nd 1511C	
MET 2606	Solid Modeling	4
	Semester Hours	17-24
Spring		
General Ed AH Elec	ctive (1 of 2)	3
MATH 1570	Applied Calculus 1	4
or MATH 1571	or Calculus 1	
MET 1515	Mechanics 1	3
MET 2607	Geometric Dimensioning and Tolerancing	3
PHYS 1501	Fundamentals of Physics 1	4
or PHYS 2610	or General Physics 1	
	Semester Hours	17
Year 2		
Fall		
CCET 2604	Properties and Strength of Materials	3
CCET 2614L	Materials Laboratory 1	2
EET 3725	Electromechanical Systems	3
EET 3725L	Electromechanical Systems Lab	1
MET 2630	Manufacturing Techniques	3
MET 2630L	Manufacturing Techniques Laboratory	1
MET 4860	Robotics Technology	2
MET 4860L	Robotics Technology Laboratory	1
	Semester Hours	16
Spring		
EET 3712	Programmable Logic Controllers	3
EET 3712L	PLC Laboratory	1
ENGL 1551	Writing 2	3
MET 3706	Machine Design 1	4
MET 3713	Fluid Power Systems	3
MET 4812	Numerical Control	2
MET 4812L	Numerical Control Lab	1
	Semester Hours	17
Year 3		
Fall		
General Ed SS Elec	· · · ·	3
CHEM 1515	General Chemistry 1	3
CHEM 1515L	General Chemistry 1 Laboratory	1
MET 2616	Mechanics 2	3
MET 3714	Fluid Mechanics	3
MET 3714L	Fluid Mechanics Laboratory	1
MET 3707	Machine Design 2	3
	Semester Hours	17

	Total Semester Hours	125-132
	Semester Hours	12
General Ed AH (2 of 2)		3
MET Elective (2 of 2)		3
ISEN/MGT Elective		3
MET 4820	Machine Systems (Capstone)	3
Spring	Jeniestei Muuis	13
Gen Ed Open Elective (3 of 3) 3 Semester Hours 13		
· , ,		3
MET Elective (1 of 2)		3
MET 3720	Mechanisms	3
MET 3711	Heat and Power Cycles	4
Fall		
Year 4		
	Semester Hours	16
General Ed Open Elective (2 of 3)		
General Ed SS Elective (2 of 2)		3
MET 4870	Applied Finite Element Method	3
MET 3705	Thermodynamics	4
EET 3715	Industrial Instrumentation and Control	3
Spring		

Electives

COURSE	TITLE	S.H.
MET Electives		
Select two of the f	ollowing:	6
ENTC 4895	Independent Engineering Technology Project	1-4
MET 3710	Tool Design	3
MET 4812	Numerical Control	2
MET 4812L	Numerical Control Lab	1
MET 4830	Intro to Additive Manufacturing	3
MET 4890	Special Topics in Mechanical Engineering Technology	1-4
ISEN/MGT Elective	es	3
Select one of the f	ollowing:	
ENT 3700	Entrepreneurship New Venture Creation	
ISEN 3720	Statistical Quality Control	
ISEN 3724		
MGT 3725	Fundamentals of Management	
MGT 2604	Legal and Social Responsibilities of Business	
Total Semester Hours 2		

PROGRAM OUTCOMES

BACHELOR OF SCIENCE IN APPLIED SCIENCE IN MECHANICAL ENGINEERING TECHNOLOGY

Graduates of the Bachelor's Degree in Mechanical Engineering Technology will possess the following competencies upon graduation:

- an ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadlydefined engineering problems appropriate to the discipline;
- an ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the discipline:
- an ability to apply written, oral, and graphical communication in broadlydefined technical and non-technical environments; and an ability to identify and use appropriate technical literature;
- an ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes; and

• an ability to function effectively as a member as well as a leader on technical teams