ELECTRICAL ENGINEERING TECH (EET)

EET 1501 Circuit Theory 1 3 s.h.
Theoretical analysis of DC electrical circuits including units, conversions, current, voltage, power, Ohm's Law, Kirchhoff's Laws, network theorems, capacitance, magnetic circuits, inductance, and transient analysis of RL and RC circuits. Prerequisite or concurrent: ENTC 1505, MATH 1513 or MATH 1510 and MATH 1511; concurrent with EET 1501L. 3 s.h.

EET 1501L Circuit Theory 1 Lab 1 s.h.
Use of electrical components to construct circuits and use of electrical instrumentation including meters and oscilloscopes to analyze DC resistive series/parallel networks and basic RC & RL transient circuits. Computer circuit analysis with PSPICE. Three hours per week.
Concurrent with: EET 1501.

EET 1502 Circuit Theory 2 3 s.h.
Study of AC sinusoidal waveforms, phasor representations, phasor algebra and phasor diagrams. Solution of steady state single phase series/parallel networks including network theorems, power and power factor, resonant circuits, filters, mutual inductance, transformers and balanced three-phase systems.
Prereq.: "C" or better in EET 1501 and EET 1501L and MATH 1513, or MATH 1510 and MATH 1511, and ENTC 1505.
Concurrent with: EET 1502L.

EET 1502L Circuit Theory 2 Lab 1 s.h.
Measure effective values of AC currents and voltages, observe waveforms with oscilloscopes, verify impedance concepts and phasor diagrams for AC series/parallel networks and resonant circuits. Computer circuit analysis with PSPICE. Three hours per week.
Concurrent with: EET 1502.

EET 2605 Electronics 1 3 s.h.
Physical basis of semiconductor materials, diodes, rectifier circuits, Zener diode regulators, clamps, clamps, special purpose diodes. Bipolar junction transistors (BJT) characteristics, bias circuits, equivalent circuit models, amplifiers and field effect transistor (FET) characteristics.
Prereq.: EET 1502 and EET 1502L or concurrent; "C" or better in the following: MATH 1513, or (MATH 1510 and MATH 1511).
Concurrent with: EET 2605L.

EET 2605L Electronics 1 Laboratory 1 s.h.
Use of meters, oscilloscope, transistor curve tracer for experiments on diode characteristics, rectifier circuits, clamps, clamps, Zener regulators, BJT and FET characteristics, BJT bias circuits and amplifiers. Computer circuit analysis with PSPICE. Three hours per week.
Concurrent with: EET 2605.

EET 2620 Digital Electronics 2 s.h.
An introductory study of number systems and conversions, codes, Boolean algebra, and logic gates. Includes Boolean function simplification, truth tables, Karnaugh maps, and combination circuits.
Prereq.: "C" or better in MATH 1513 or MATH 1510 and MATH 1511, and EET 1501 and EET 1501L, and ENTC 1505.
Concurrent with: EET 2620L.

EET 2620L Digital Electronics Lab 1 s.h.
Experiments utilizing digital integrated circuits to implement various logic functions discussed in EET 2620. Three hours per week.
Concurrent with: EET 2620.

EET 2653 Fiber Optics 3 s.h.
Light propagation in fiber; connections, attenuation, and signal distortion; splicing and analysis of coupling losses; optical transmitters and receivers for analog and digital signals. Two hours lecture, three hours lab per week.
Prereq.: "C" or better in EET 1502 and EET 1502L and EET 2605 and EET 2605L and MATH 1570.

EET 3700 Methods in Circuit Analysis 3 s.h.
Review of circuit analysis techniques using phasor algebra; mesh and nodal analysis; Thevenin and Norton equivalents; superposition theorem; three phase circuits; circuit solutions using matrix methods; and Fourier analysis of periodic waveforms with applications to circuit analysis. Two hours lecture and three hours computational lab per week. Corequisite MATH 2670.
Prereq.: Grade of C or better in the following: EET 3706 and EET 3706L and EET 3710 and EET 3710L and EET 3735 and EET 3735L and (MATH 1570 or MATH 1571).

EET 3701 Transform Circuit Analysis 3 s.h.
Introduction to Laplace transforms and the use of Laplace transforms in circuit analysis, transfer functions, frequency response of networks, poles and zeroes, stability, Bode plots. Two hours lecture and three hours of computational lab per week.
Prereq.: MATH 2670 and EET 3700 with a grade of "C" or better.

EET 3706 Electronics 2 3 s.h.
Field effect transistor (FET) bias circuits and amplifiers, thyristor circuits, frequency effects (Bode plots), differential amplifiers, linear and non-linear op-amp circuits, active filters, oscillators and regulated power supplies.
Prereq.: "C" or better in EET 1502 and EET 1502L and EET 2605 and EET 2605L and MATH 1570.
Concurrent with: EET 3706L.

EET 3706L Electronics 2 Laboratory 1 s.h.
Experiments involving field effect transistors (FETs), integrated circuits (ICs), operational amplifiers, frequency effects on gain, oscillator circuits and regulated power supplies. Computer circuit analysis with PSPICE. Three hours per week.
Concurrent with: EET 3706.

EET 3710 Electrical Machines 3 s.h.
Construction, operating principles and characteristics, efficiency and control of DC motors, generators, and specialized machines. AC single and 3-phase transformers, alternators, induction and synchronous motor principles, characteristics, efficiency and control.
Prereq.: "C" or better in EET 1502 and EET 1502L and ENTC 1505 and MATH 1570.
Concurrent with: EET 3710L.

EET 3710L Electrical Machines Lab 1 s.h.
Experiments with DC motors and generators and AC transformers, alternators, induction and synchronous motors to observe operation, efficiency, control and machine characteristics. Three hours per week.
Concurrent with: EET 3710.

EET 3712 Programmable Logic Controllers 3 s.h.
Development of ladder logic programming and application to programmable logic controllers (PLCs). Examination of input/output (I/O) device characteristics and interfacing including both digital and analog I/O. Installation, maintenance and safety practices for PLCs.
Prereq.: "C" or better in EET 1502 and EET 1502L and ENTC 1505 and MATH 1570.

EET 3712L PLC Laboratory 1 s.h.
Exercises in ladder logic programming for programmable logic controllers (PLCs) using concepts developed in EET 3712. Input/Output (I/O) concepts related to PLCs. Three hours per week.
Concurrent with: EET 3712.

EET 3725 Electromechanical Systems 3 s.h.
AC/DC circuit analysis techniques including network theorems, Multisim computer circuit analysis with applications to AC/DC machinery, electronics, digital circuits and control systems. Three hours lecture per week.
Prereq.: C or better in MATH 1570 and ENTC 1505.
Concurrent with: EET 3725L.
EET 3725L Electromechanical Systems Lab 1 s.h.
Lab experiences to accompany EET 3725 Electromechanical Systems. Topics include lab safety, resistor color code, DC and AC circuits, oscilloscope and function generator, diode rectifiers, transistor switching circuits and amplifiers, three phase power measurements, transformer testing, DC and AC motor characteristics.
Prereq.: C or better in the following: MATH 1570, ENTC 1505.
Concurrent with: EET 3725.

EET 3730 Logic Systems Design 3 s.h.
The characteristics and applications of integrated circuit logic families and various memory devices. Emphasis on the design of digital systems with SSI, MSI, and LSI as system components.
Prereq.: "C" or better in EET 2620 and EET 2620L and EET 2605 and EET 2605L and EET 1502 and EET 1502L and MATH 1570.
Concurrent with: EET 3730L.

EET 3730L Logic Systems Design Lab 0 s.h.
Laboratory exercises dealing with concepts developed in EET 3730. Three hours per week.
Concurrent with: EET 3730.

EET 3735 Microprocessor Architecture and Programming 3 s.h.
An introduction to microprocessor architecture, memory organization, and input/output addressing. Emphasis on machine/assembly language programming to teach concepts of buses, machine cycles, and internal data flow. Two hours lecture and three hours of lab per week.
Prereq.: "C" or better in CSIS 1590 or EET 1501, EET 1501L, EET 2620, EET 2620L, and MATH 1513 or MATH 1510 and MATH 1511.

EET 3735L Microprocessor Architecture and Programming Laboratory 0 s.h.
Microprocessor Architecture and Programming Laboratory.

EET 3745 Microprocessor Systems 2 3 s.h.
Continuation of EET 2645 with emphasis on advanced programming techniques, memory mapping, I/O ports, and basic I/O interfacing.
Prereq.: "C" or better in EET 3735 and EET 3735L and EET 1502 and EET 1502L and MATH 1570.

EET 3745L Microprocessor Systems 2 Lab 0 s.h.
Laboratory exercises utilizing a microcomputer to provide practical applications of concepts developed in EET 3745. Three hours per week.
Concurrent with: EET 3745.

EET 3760 Variable Speed Drives 3 s.h.
Introduction to electronic speed control of direct and alternating current motors. Power conversion and waveform modulation techniques, drive sizing, harmonics, and motor performance.
Prereq.: "C" or better in EET 3710 and EET 3710L and EET 3706 and EET 3706L, EET 3700, and MATH 2670.
Concurrent with: EET 3760L.

EET 3760L Variable Speed Drives Lab 0 s.h.
Exercises in variable speed drive applications, demonstrating the concepts developed in EET 3760.
Concurrent with: EET 3760.

EET 3780 Communication Systems 3 s.h.
Audio signals, noise, untuned and RF amplifiers, amplitude, frequency, pulse modulation, transmission lines, antennas, and multiplexing of communication channels.
Prereq.: "C" or better in the following: EET 1502, EET 1502L, EET 3706, EET 3706L, EET 3700, and MATH 2670.
Concurrent with: EET 3780L.

EET 3780L Communication Systems Lab 0 s.h.
Laboratory exercises dealing with application of concepts developed in EET 3780. Three hours per week.
Concurrent with: EET 3780.

EET 4810 Electrical System Design 3 s.h.
The design and layout of electrical systems for power, light, heat, signals, and communications in commercial, industrial, and residential buildings. Two hours lecture, three hours of lab per week.
Prereq.: EET 3710 and EET 3710L or EET 3725 and EET 3725L, with grade of C or better.

EET 4815 Power System Studies 3 s.h.
Introduction to electrical power system studies including system modelling, load flow and voltage drop, short circuit, protective device coordination, motor transient starting, power quality, and arc flash calculations. Two hours lecture and three hours computational lab per week.
Prereq.: EET 3710 and EET 3710L and EET 3700 and MATH 2670 all with grades of "C" or better.

EET 4817 High Voltage Design 3 s.h.
Design of medium and high voltage electrical power systems commonly found in large industrial and commercial facilities, and electric utility systems. Course content focuses on the design of overhead and underground systems, and equipment application in accordance with the National Electrical Safety Code (NESC). Two hours lecture and three hours computational lab per week.
Prereq.: "C" or better in EET 3710 and EET 3710L and EET 3700 and MATH 2670 all with grades of "C" or better.

EET 4820 Power System Protection and Control 3 s.h.
An introduction to electrical power system protection and control utilizing intelligent smart grid technologies. Topics include power system analysis, real time data acquisition and control, synchrophasor measurements, communications, and application of microprocessor-based protective relaying. Two hours lecture per week.
Prereq.: "C" or better in EET 3710 and EET 3710L and EET 3712 and EET 3712L, EET 3700 and MATH 2670.
Concurrent with: EET 4820L.

EET 4820L Power System Protection and Control Lab 0 s.h.
Establishing communications, programming, and testing of various microprocessor based power system protective relays, including time-overcurrent, bus, differential, motor, distributed generation, and transformer relays. Three hours lab per week.
Prereq.: "C" or better in EET 3710 and EET 3710L and EET 3712 and EET 3712L.
Concurrent with: EET 4820.

EET 4845 Microprocessor Systems 3 3 s.h.
Continuation of EET 3745 with emphasis on real data acquisition, A/D and D/A conversions, and industrial applications.
Prereq.: "C" or better in EET 3730 and EET 3730L and EET 3745 and EET 3745L and MATH 2670.
Concurrent with: EET 4845L.

EET 4845L Microprocessor Systems 3 Lab 0 s.h.
Laboratory exercises utilizing a microcomputer to provide practical applications of concepts developed in EET 4845. Three hours per week.
Concurrent with: EET 4845.

EET 4850 Integrated Circuit Applications 3 s.h.
Introduction to integrated circuits technology and typical application.
Prereq.: "C" or better in EET 3706 and EET 3706L and EET 1502 and EET 1502L and MATH 2670.
Concurrent with: EET 4850L.

EET 4850L Integrated Circuit Applications Lab 0 s.h.
Laboratory exercises dealing with the application of concepts developed in EET 4850. Three hours per week.
Concurrent with: EET 4850.
EET 4870 Process Control Technology 4 s.h.
Interdisciplinary capstone course. Analysis and design of control systems for industrial processes, utility automation, and electromechanical systems. Includes preparation of schematic, control, and wiring diagrams; specifications, estimates, project schedule, and presentation of results. Three hours lecture, three hours lab per week.
Prereq.: Grades of C or better in EET 3712 and EET 3712L and EET 3760 and EET 3760L and EET 3701 and EET 3780 and EET 3780L and EET 3745 and EET 3745L and MATH 2670 and EET 4810 and two EET electives and Senior standing in EET and permission of EET program coordinator.

EET 4880 Electrical and Mechanical Facilities Design 3 s.h.
Multidisciplinary study of building systems; HVAC, plumbing, electrical power, lighting, and communication systems. Computational labs and group projects for each topic. Two hours lecture and three hours computational lab.
Prereq.: Senior standing and permission of the CCET or EET student’s program advisor.
Concurrent: CCET 4884.

EET 4890 Special Topics in EET 1-4 s.h.
Special topics/new developments in electrical engineering technology. Subject matter, special prerequisites, and credit hours to be announced in advance of each offering. May be repeated with different subject matter to a maximum of 8 s.h.
Prereq.: Senior standing in EET or consent of the instructor.