DOCTOR OF PHILOSOPHY IN MATERIALS SCIENCE AND ENGINEERING

Program Coordinator
Dr. Clovis A. Linkous
5001 Ward Beecher Science Hall
(330) 941-1958
calinkous@ysu.edu

Program Description
The Doctor of Philosophy (Ph.D.) in Materials Science and Engineering is a cutting-edge program, employing state-of-the-art analytical materials instrumentation not found anywhere else in the area between Cleveland and Pittsburgh. Incorporating the research activities from the YSU Center of Excellence in Materials Science and Engineering (CEMSE) and the Ohio Hub for Innovation and Opportunity in Advanced Materials Commercialization, this program promotes the synergistic interaction of industrially focused research efforts of faculty, students, and commercial research partners leading to economic development of the region. The Ph.D. is specifically targeted at producing graduates who can find employment as industrial research scientists or engineers.

Application Procedure
Program information may be obtained from the College of Science, Technology, Engineering and Mathematics and from the Ph.D. Program (http://www.ysu.edu/academics/science-technology-engineering-mathematics/materials-science-and-engineering-phd/) webpage. Application information may be obtained from The Office of Graduate Admissions in Coffelt Hall (http://www.ysu.edu/gradcollege/) and from Ph.D. Program admission (http://cms.ysu.edu/college-graduate-studies/domestic-admissions/) webpage. All application materials must be submitted through the online application system (https://ysu.elluciancmrecruit.com/admissions/pages/welcome.aspx)

Application Requirements
Students with a B.S. or M.S. in materials science, materials engineering, or related fields (including chemistry, physics, or mechanical, chemical, electrical or civil engineering) can be admitted through the College of Graduate Studies on a competitive basis up to the capacity of the program. Requirements for admission to the Ph.D. program include the following:

- B.S. or M.S. degree in materials science, materials engineering, or related fields (including chemistry, physics, or mechanical, chemical, electrical or civil engineering);
- Cumulative undergraduate grade-point average of at least 3.0 on a 4.0 scale, or a graduate GPA of 3.3/4.0;
- GRE scores are required. Scores in the following ranges generally reviewed favorably: Verbal = 500-800, Quantitative = 650-800, and Analytical Writing = 4.0-6.0;
- For students whose native language is not English, a TOEFL score of 550 (or comparable score on a similar test)
- Completed application (application link (http://catalog.ysu.edu/graduate/graduate-programs/doctor-philosophy-materials-science-engineering/%20https://ysu.elluciancmrecruit.com/admissions/pages/welcome.aspx)).
 - Resume
 - Statement of intent
 - 3 references

All applications will be reviewed by an admissions committee consisting of the program director and a group of program faculty of sufficient breadth to interpret the credentials of all members of the applicant pool. The selection/admission process is competitive; meeting eligibility criteria does not assure admission into the program. Applications received as complete by February 1st will have full consideration for fall admissions and graduate assistant opportunities.

Graduate Faculty
Snjezana Balaz, Ph.D., Assistant Professor
Structure of surfaces of thin films, semiconductors, and nanoclusters

Pedro Cortes, Ph.D., Associate Professor
Structure-property relationships of polymers; composites and hybrid materials; smart materials and structures; development of chem-bio sensing platforms based on carbon nanotubes

Michael J. Crescimanno, Ph.D., Professor
Noise spectroscopy in multiphoton quantum optics; optical materials

Allen D. Hunter, Ph.D., Professor
Materials chemistry; crystallography; instrumental Methods; chemistry education

AKM Anwarul Islam, Ph.D., Professor
Impact of blast on highway bridges; use of CFRP in enhancing structural strength of concrete members; structural health monitoring of bridges using wireless sensor network

Frank Xiying Li, Ph.D., Professor, Acting Chair
Electron spin resonance imaging; EMC, RF, and software engineering; networks; applied magnetic fields

Clovis Linkous, Ph.D., Professor
Ceramic electrolytes, polymer membrane electrolytes, solid state hydrogen storage, photovoltaic materials, photocatalysis; flexible and optically transparent conductors

Sheri R. Lovelace-Cameron, Ph.D., Professor
Synthesis and electrochemistry of novel organometallic polymers; synthesis of metal organic frameworks

Eric MacDonald, Ph.D., Professor
3D printed multi-functional applications and closed-loop control in additive manufacturing with instrumentation and computer vision for improved quality and yield

Hazel Marie, Ph.D., Professor
FEA/CFD modeling applied to solid-fluid interaction of thin film lubrication sealing; mechanical material modeling of soft biological tissue

Holly J. Martin, Ph.D., Associate Professor
Corrosion studies; modification of metal surfaces to strongly adhere polymeric coatings for corrosion resistance

Tom Nelson Oder, Ph.D., Professor
Micro/nano fabrication and characterization of electronic and opto-electronic devices of wide band gap semiconductors: SiC, group III-nitrides, ZnO

Donald Priour, Ph.D., Associate Professor
Theoretical condensed matter physics, particularly related to systems of technological relevance where the flow of charge or fluid is modified or inhibited by disorder in the form of random inhomogeneities or severed wires or bonds

Josef B. Simeonsson, Ph.D., Professor
Analytical atomic and molecular spectroscopy; trace and ultratrace analysis; laser induced fluorescence spectroscopy; laser ionization spectroscopy; Raman spectroscopy; environmental analysis
Learning Outcomes

- The student will have developed a fundamental understanding of the structure of matter at the atomic/molecular level, particularly in the solid state, and its influence on the physical and chemical properties of a substance.
- The student will have developed a familiarity with the instrumental tools of materials research, including microscopy, spectroscopy, and mechanical testing.
- The student will have developed the personal organizational and disciplinary skills to grasp a research problem involving a lengthy program of investigation, break it down into a sequence of tasks, and follow them through to a conclusion.
- The student will have developed sufficient writing skills to prepare laboratory reports, research papers, journal articles, and an organized dissertation comprising a hundred pages or more.

Graduate Courses

MATL 6982 Graduate Research 1-6 s.h.
Individual investigation of advanced topics under the guidance of selected program faculty. May be repeated for a maximum of 30 semester hours.

MATL 6990 Seminar in Materials Science and Engineering 1 s.h.
Presentations of ongoing research in materials science and engineering. Includes presentations by guest speakers, faculty and graduate students. May be repeated for a maximum of 3 semester hours.

MATL 7010 Analytical Methods for Materials Science 1 2 s.h.
A laboratory course where the student will receive hands-on training with instruments commonly used in materials research. Techniques covered include optical methods, thermogravimetry, differential scanning calorimetry, X-ray diffraction, X-ray fluorescence, magnetic permeability, Hall effect, and atomic force microscopy. (1 h. lecture / 3 h. lab).

MATL 7020 Analytical Methods for Materials Science 2 2 s.h.
A laboratory course where the student will receive hands-on training with instruments commonly used in materials research. Instruments covered include stress/strain apparatus, scanning electronic microscope, electron microprobe, transmission electron microscope, focused ion beam microscope, X-ray photoelectron spectrometer, Auger spectrometer, impedance analyzer, and potentiostat. (1 h. lecture / 3 h. lab).

MATL 8010 Structure of Materials 3 s.h.
A study of the structure/property relationship of materials at the electronic, atomic, and molecular level. Using quantum chemistry, symmetry, chemical bonding and electrochemistry, this course will introduce the student to the classification and properties of amorphous, crystalline, and semi-crystalline structures including metals, semiconductors, ceramics, polymers, and hybrid materials. The properties to be studied include mechanical, thermal, electrical, and magnetic properties.

MATL 8020 Mechanical Properties of Materials 3 s.h.
This course addresses the mechanical behavior of materials, assuming knowledge of elasticity, plasticity, fracture and creep, and aims to provide a robust analytical treatment of these topics across size scales and material types. The course is split into three sections: (a) Continuum mechanics, (b) Advanced phenomena in mechanics of materials, and (c) Case studies focused on the design and processing of materials. Prereq.: MATL 8010.

MATL 8030 Thermodynamics and Phase Behavior 3 s.h.
Detailed examination of chemical equilibria and chemical changes with an emphasis on the theoretical basis for these phenomena and the properties of phase diagrams. The use of computer models for chemical equilibrium calculations utilizing extensive thermodynamic databases. Prereq.: MATL 8030.

MATL 8040 Kinetics, Diffusion, and Rate Processes 3 s.h.
Essential topics covered include diffusion in solids and liquids; complex motion of dislocations and interfaces; complex kinetics of phenomena such as phase transformations and morphological evolution; and the rate at which these and other kinetic phenomena occur. Prereq.: MATL 8030.

Special Notes

College of Graduate Studies policies concerning transfer credits, time limits, and other academic matters must be followed.

MATL 8060 Dissertation 1-9 s.h.
Design, proposal, completion, and reporting of scholarly research deemed acceptable to the program faculty. Culminates in an oral presentation to dissertation committee.
Prereq.: completion of qualifying exam and research proposal.