MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Program Director
Dr. William Sturrus
2023 Ward Beecher Hall
330-941-3616
wgsturrus@ysu.edu (fparstrong@ysu.edu)

Program Description
The Environmental Science program offers a multidisciplinary, interdepartmental graduate program leading to a Master of Science degree. The program office is housed in Ward Beecher Hall and is administered by the Department of Physics, Astronomy, Geology and Environmental Sciences. This program is intended for individuals who have undergraduate degrees in Environmental Science, other natural or social sciences, engineering, or health professions. It is designed to meet the needs of students and working professionals preparing for supervisory roles in environmental science (research and management), with emphasis on a risk-based approach to the solving of environmental problems. The curriculum requires students to broaden their knowledge with core courses in Environmental Science, and related disciplines to deepen their expertise with elective courses, and to demonstrate their abilities to prepare a scholarly thesis or participation in an internship. This degree will benefit students who are planning careers with regulatory agencies, regulatory compliance and management, research facilities, and consulting firms providing state-of-the-art assessment, management, and remediation.

Admission Requirements
A cumulative undergraduate minimum grade point average of 2.7 (on a 4.0 scale) is required for admission.

- GRE not required
- Bachelor’s degree in Environmental Science or related field

Graduate Faculty

Felicia P. Armstrong, Ph.D., Professor
Environmental chemistry of soils; water quality; ecotoxicology; soil remediation

Thomas Jordan
Environmental geophysics; archaeo-geophysics; hydro-geophysics; exploration; geophysics and hydrogeology

Colleen McLean, Ph.D., Associate Professor
Aqueous and environmental geochemistry; paleolimnology; biogeochemistry

Ian J. Renne, Ph.D., Associate Professor
Plant community ecology; invasive species; community structure; allelopathic systems; avian ecology

Bradley A. Shellito, Ph.D., Professor
Applications of geospatial technology (Geographic Information Science, remote sensing, global positioning systems, and 3D Modeling)

Josef B. Simeonsson, Ph.D., Professor
Analytical atomic and molecular spectroscopy; trace and ultratrace analysis; laser induced fluorescence spectroscopy; laser ionization spectroscopy; Raman spectroscopy; environmental analysis

Degree Requirements
Environmental Science program provides coursework designed to provide breadth in environmental science and understanding of environmental issues and regulations. Each student admitted to the program will meet with the program director to choose initial coursework and to meet graduate faculty. Each thesis-track student is required to assemble a thesis committee with the recommendation of his or her thesis advisor upon admission.

All students in the Environmental Science graduate program must have their course schedules approved by the program director every semester. A proposed course of study must be approved by the thesis advisor and the thesis committee for students in the thesis track. The course of study will be based on the student’s area of specialization, background, and career interests.

The thesis committee will consist of three to five faculty members in appropriate fields of expertise and one non-faculty professional. The non-faculty member must qualify for appointment as an adjunct graduate faculty member at YSU. Research proposals and proposed course of study must be completed and approved by the thesis committee by the end of the second semester of full-time graduate study.

The thesis shall advance knowledge in environmental science and be applicable to the solving of environmental problems. The thesis requirement includes a formal document and a draft article in journal format suitable for journal submission. A draft of the thesis must be reviewed by the thesis advisor then submitted to the thesis committee two weeks before the thesis defense. The thesis defense will comprise an oral presentation before the thesis committee for final thesis approval.

Required Courses
- **ENST 5810** Environmental Safety 3
- **ENST 5860** Environmental Regulations 3
- **ENST 6900** Advanced Environmental Studies 3
- **BIOL 5853** Biometry 3
- **GEOG 6901** Introduction to Geographic Information Science 3
- **ENST 6930** Environmental Safety 3

OR
- **ENST 5810** Environmental Safety 3
- **ENST 6930** Ecological Risk Assessment 3

Required Course Total
18

ELECTIVES
Non-thesis students select 9sh from the following:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>S.H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST 5800</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ENST 5820</td>
<td>Sustainability, Climate Change, and Society</td>
<td>3</td>
</tr>
<tr>
<td>ENST 5870</td>
<td>Soil Quality and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENST 6901</td>
<td>Sources of Contamination</td>
<td>3</td>
</tr>
<tr>
<td>ENST 6920</td>
<td>Environmental Compliance</td>
<td>3</td>
</tr>
<tr>
<td>ENST 6999</td>
<td>Special Topics in Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 5817</td>
<td>Environmental Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 5810</td>
<td>Groundwater Resource Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 6901</td>
<td>Geology of Ohio and Pennsylvania</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 6902</td>
<td>Ecology of Lakes</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 6903</td>
<td>Stream Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 6906</td>
<td>Ecosystems Field Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 5888</td>
<td>Environmental Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 5888L</td>
<td>Environmental Biotechnology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CEEN 5837</td>
<td>Environmental Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>CEEN 5884</td>
<td>Solid and Hazardous Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CEEN 6977</td>
<td>Hydrology</td>
<td>3</td>
</tr>
</tbody>
</table>
ENST 5820 Sustainability, Climate Change, and Society 3 s.h.
This course explores environmental, economic, and social aspects of sustainable development, with an emphasis on economy and society. Through topics such as water, food, and climate change, we examine the role of humans and institutions in sustainable development and possibilities for reconfiguring relationships between our institutions and the natural world.

Prereq.: junior, senior or graduate level standing.

ENST 5830 Toxicology and Risk Assessment 3 s.h.
A study of environmental toxicology of chemicals, primarily anthropogenic pollutants, and their effect on humans and ecosystems. Includes transportation of pollutants in the environment, biochemical reactions, toxicity testing methods, and dose-response assessment. Continues with an introduction in the process of estimating risk and the perception of those risks including how risk is used to set environmental standards.

Prereq.: ENST 1516 and 9 sh >3700 in ENST, CHEM, BIOL, GEOL or CEEN, junior, senior or graduate standing.

ENST 5860 Environmental Regulations 3 s.h.
An examination of federal and state regulations that relate to cleanup of abandoned waste sites, management of waste from current waste generators, development of new hazardous products and chemicals, safety and health issues, and control of pollution into air and water.

Prereq.: ENST 2600 or equivalent.

ENST 6900 Advanced Environmental Studies 3 s.h.
A study of the principles and issues of environmental science, health, technology, and affairs. Topics will include contaminant chemistry; terrestrial and aquatic ecology; risks to human health; waste management; conservation; and sustainable development, energy, and pollution. Local, regional, and global issues will be studied.

ENST 6901 Sources of Contamination 3 s.h.
A study of the sources and fate and transport of air, water, and soil contaminants that have potential to adversely affect human health and the environment. Topics will include measurement of environmental parameters, contaminants that have potential to adversely affect human health and the natural world.

Prereq.: ENST 2600 or equivalent.

ENST 6910 Environmental Management Systems Standards (ISO 14001) 1 s.h.
Introduction to establishing a program to set internal industrial standards to identify, measure, and control the environmental impact of their activities, products, and services, including environmental policy, communication, legal requirements, training, documentation, and emergency preparedness.

ENST 6920 Environmental Compliance 3 s.h.
Regulatory compliance concerning operations of environmental and health and safety departments. RCRA permitting (NPDES and air emissions), landfilling, Right to Know, waste generation, storage, shipping (manifests and placarding), disposal of wastes, MSDS, OSHA regulations, safe work practices, hiring consultants (technical and legal), writing requests for proposals, and documenting and report writing.

Prereq.: ENST 5860, ENST 6900, or equivalent.

ENST 6921 Industry/Institutional Management for the Environmental Professional 3 s.h.
A comprehensive background in management principles and operations relating to the environmental professions. Topics include budgeting, staffing, scheduling, leadership, and quality assurance/control. The student will learn to write, evaluate, and implement technical and cost proposals for contracts and grants, scopes of work, operations plans, sampling and analysis plans, health and safety plans, job descriptions, resumes, statements of qualifications, mission statements, meeting agendas (for professionals and the general public), and other written and oral communications (reports, memoranda, memoranda of understanding, policy briefs, press releases, fact sheets, requests for information).

Prereq.: ENST 6900 or equivalent.
ENST 6931 Ecological Risk Assessment 3 s.h.
The student will examine environmental risks to nonhuman populations.
Topics will include the study of measurements of adverse effects due to one or
more stressors by examining population communities and ecosystems. Also,
the class will study the following issues: threatened and endangered species,
wetlands, endocrine disruption, multiple stressors, sediment and soil toxicity,
conservative screening versus site-specific studies, and natural resource
damage claims.
Prereq.: ENST 6900 and ENST 5830 or equivalent.

ENST 6990 Thesis 1-6 s.h.
Hours arranged. Applicable to master’s degree in environmental studies.
Research selected and supervised by departmental advisor and approved by
graduate faculty of environmental studies program and graduate dean. May be
repeated.

ENST 6995 Introduction to Environmental Science Research 2 s.h.
This course introduces the student to the fundamental and practical aspects
of research, especially as they apply to environmental sciences. The course
emphasizes research methodologies and ethics, how to review the literature,
how to write a research proposal, and how research results are presented. The
course will include presentations of the faculty research interests.
Prereq.: graduate standing or permission of instructor.

ENST 6999 Special Topics in Environmental Science 1-3 s.h.
Environmental science topics selected by faculty from fields of current
research interest or of special emphasis. May be repeated with a different
topic up to a total of six semester hours.
Prereq.: Permission of director.