DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

(330) 941-3012

The department offers coursework leading to the Bachelor of Engineering with a major in electrical engineering. Traditional, computer/digital, and biomedical options are available. The first courses in the department major are electrical and computer engineering are ECEN 1521 Digital Circuits and ECEN 1521L Digital Circuits Laboratory, and are available to all University students without prerequisites. Visit the department office or website for details.

Mission

The Department of Electrical and Computer Engineering is committed to academic excellence, and it provides educational opportunities in electrical and computer engineering. We provide students at baccalaureate and master levels with diverse and comprehensive educational experiences which meet the highly demanding standards required by industry and preparation for further education.

We utilize the resources of the university and interact with industry to evaluate, optimize, and upgrade our teaching, research, scholarship, service and facilities to continue offering a high-standard educational environment. We promote students’ intellectual growth to become fully developed, informed, and productive in order to serve themselves and their local and global communities effectively.

Program Educational Objectives

The Department of Electrical and Computer Engineering at Youngstown State University offers students a high standard of engineering education. In fulfillment of its mission, as well as the missions of the College of Science, Technology, Engineering, and Mathematics, and the University, the following Program Educational Objectives are established for the Electrical Engineering Program.

Within a few years of graduation, our graduates should be able to:

• Competently design, analyze, test, and implement systems and devices in the field of electrical engineering within the constraints set by the client and by society, and disseminate the results.
• Practice engineering ethically and responsibly, both individually and within diverse teams, while holding paramount the impact of engineering decisions on society and ecology.
• Commit to a career long dedication to growth through continued learning in their engineering profession and/or pursuit of post graduate education, and to demonstrate leadership and influence within their employer’s organization.

Student Outcomes

The following (1 through 7) Student Outcomes support the program educational objectives. Attainment of these outcomes by students by the time of their graduation prepares graduating students to enter the professional practice of engineering.

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Electrical Engineering Annual Enrollment and Graduation Data

The Electrical Engineering BE Program has been accredited by the engineering accreditation commission of ABET, http://www.abet.org

• The last campus visit by ABET was on October 27-29, 2013.
• The next campus visit by ABET will be in the 2019-2020 academic year.

<table>
<thead>
<tr>
<th>Term</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2012</td>
<td>103</td>
</tr>
<tr>
<td>Fall 2013</td>
<td>103</td>
</tr>
<tr>
<td>Fall 2014</td>
<td>117</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>108</td>
</tr>
<tr>
<td>Fall 2016</td>
<td>123</td>
</tr>
<tr>
<td>Fall 2017</td>
<td>123</td>
</tr>
<tr>
<td>Fall 2018</td>
<td>141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-2013</td>
<td>19</td>
</tr>
<tr>
<td>2013-2014</td>
<td>16</td>
</tr>
<tr>
<td>2014-2015</td>
<td>29</td>
</tr>
<tr>
<td>2015-2016</td>
<td>23</td>
</tr>
<tr>
<td>2016-2017</td>
<td>35</td>
</tr>
<tr>
<td>2017-2018</td>
<td>30</td>
</tr>
</tbody>
</table>

Laboratory Facilities

The Department of Electrical and Computer Engineering maintains well-equipped laboratory facilities for circuits, electronics, communications, electromagnetics, energy conversion, power systems, control systems, and digital systems. PC computing and wireless networking are available, as well as various licensed software packages.

Professional Practice

The Department of Electrical and Computer Engineering participates in the College of STEM Professional Practice Program.

Students who complete course and internship requirements related to the field may receive up to 2 s.h. of credit toward ECEN elective courses. Contact the department for details.
Tracks

Traditional, computer/digital, and biomedical options with design projects, computer simulation, and hands-on laboratory sessions are the pillars of the Bachelor of Engineering with a major in electrical engineering. These features provide students with the opportunity to prepare for a vast array of entry-level positions or advanced studies.

With faculty assistance, students tailor their programs to meet their educational objectives. This individualized approach includes choices of options and elective courses, participation in a co-op, and semester-by-semester scheduling of courses.

Traditional TRACK

The traditional option:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>S.H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Core</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Other Engineering</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Writing and Speech</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>General Education Courses</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td></td>
<td>124</td>
</tr>
</tbody>
</table>

Computer/digital TRACK

The computer/digital option:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>S.H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Core</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Other Engineering</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Computer Engineering/Science</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Writing and Speech</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>General Education Courses</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td></td>
<td>131</td>
</tr>
</tbody>
</table>

Biomedical TRACK

The biomedical option:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>S.H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Core</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Other Engineering</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Math</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Science including Biology and Organic Chemistry</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Writing and Speech</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>General Education Courses</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total Semester Hours</td>
<td></td>
<td>129</td>
</tr>
</tbody>
</table>

Students in any of these options can participate in the co-op program. Scheduling is reasonably flexible, but there are some restrictions.

Course Scheduling

Scheduling of courses will depend upon your particular situation. Are you working part time? Will you pursue an internship? Do you wish a full- or part-time academic pursuit of the degree? Answers to these questions will affect your scheduling of courses. The Department of Electrical and Computer Engineering attempts to schedule junior and senior courses to accommodate these situations.

Advising is mandatory, and students are required to meet with their department advisors to choose their semester-by-semester courses. Also, up-to-date recommended schedule and curriculum lists are available on-line and at the department office.

For more information, visit the Department of Electrical and Computer Engineering (http://www.ysu.edu/academics/science-technology-engineering-mathematics/electrical-engineering-major).

Chair
Jalal Jalali, Ph.D., Professor, Chair

Professor
Farzad Ahmadi, Ph.D., Assistant Professor
Michael Ekoniak, Ph.D., Assistant Professor
Frank Xiying Li, Ph.D., Professor
Eric MacDonald, Ph.D., Professor
Faramarz Doc Mossayebi, Ph.D., Associate Professor
Lin Sun, Ph.D., Assistant Professor

Lecturer
Edward Burden, M.S., Lecturer

Major

• Electrical Engineering (http://catalog.ysu.edu/undergraduate/colleges-programs/college-science-technology-engineering-mathematics/department-electrical-computer-engineering/electrical-computer-engineering-traditional-option)

Major Tracks

• Electrical Engineering, Traditional Track (http://catalog.ysu.edu/undergraduate/colleges-programs/college-science-technology-engineering-mathematics/department-electrical-computer-engineering/electrical-computer-engineering-traditional-option)
• Electrical Engineering, Biomedical Track (http://catalog.ysu.edu/undergraduate/colleges-programs/college-science-technology-engineering-mathematics/department-electrical-computer-engineering/electrical-computer-engineering-biomedical-option)

Minor

• Minor in Electrical and Computer Engineering (http://catalog.ysu.edu/undergraduate/colleges-programs/college-science-technology-engineering-mathematics/department-electrical-computer-engineering/minor-electrical-computer-engineering)
• Minor in Mathematics (http://catalog.ysu.edu/undergraduate/colleges-programs/college-science-technology-engineering-mathematics/department-mathematics-statistics/mathematics-minor)

ECEN 1521 Digital Circuits 3 s.h.
Digital concepts and design techniques; number systems, switching algebra, logic gates, truth tables. Combinational logic circuits with an introduction to sequential circuits. Practical applications.
ECEN 1560 Electrical Engineering Computing 2 s.h.
Problem solving techniques for the fields of electrical and computer engineering; procedural program development using the C/C++ programming language. Fundamentals of engineering drawing using AutoCAD commercial software packages. One hour lecture, three hours lab. ENGR 1555 may be taken concurrently.

Prereq.: MATH 1571 or concurrent high school technical drawing proficiency or ENGR 1555.

ECEN 2611 Instrumentation and Computation Lab 1 1 s.h.
Laboratory experiments and computer exercises to accompany ECEN 2632. Laboratory experimentation and basic instrumentation. Computer-aided analysis and simulation.

Prereq. or concurrent ECEN 2632.

ECEN 2612 Instrumentation and Computation Lab 2 1 s.h.
Laboratory experiments and computer exercises to accompany ECEN 2633. Laboratory experimentation and basic instrumentation. Computer-aided analysis and simulation.

Prereq.: ECEN 2611.

ECEN 2614 Basics of Electrical Engineering 3 s.h.
Introduction to electrical circuit elements and laws; DC and AC analysis. Introduction to digital devices and circuits with applications. Applications of electromagnetics. Intended for non-electrical engineering majors.

Prereq.: MATH 1571.

ECEN 2632 Basic Circuit Theory 1 3 s.h.

Prereq. or concurrent: MATH 1572.

ECEN 2633 Basic Circuit Theory 2 3 s.h.

Prereq.: ECEN 2632.

ECEN 3711 Intermediate Laboratory 1 1 s.h.
Laboratory experiments and computer exercises in the areas of digital and analog electronics and logic and computer circuits. Designed to accompany the co-requisite courses.

Prereq.: ECEN 2612.

ECEN 3712 Intermediate Laboratory 2 1 s.h.
Laboratory experiments and computer exercises in the areas of digital and analog electronics, logic and computer circuits, and electromagnetics. Designed to accompany the co-requisite courses.

Prereq.: ECEN 3711.

ECEN 3717 Sensor Fundamentals 3 s.h.
Basic principles of sensors such as electro-chemical, -mechanical, -optical, and -thermal transducers. Signal conditioning and smart sensors. Applications to process control and environmental systems.

Prereq.: MATH 3705, and either PHYS 2611 or ECEN 2632.

ECEN 3730 Microprocessors and Microcontrollers 3 s.h.
Organization and structured assembly language programming. Digital controller devices and their relationships to processors and physical environments. Two hours lecture and three hours laboratory per week.

Prereq.: ECEN 3733.

ECEN 3731 Digital Circuit Design 3 s.h.
Modern digital circuit analysis and design. Latches, flip-flops, registers, counters, memories, programmable logic arrays, and arithmetic logic units. Logic gate-level synthesis and computer simulation using CAD tools. Synchronous and asynchronous finite-state machines.

Prereq.: ECEN 1521, ECEN 2633.

ECEN 3734 Computer Design 3 s.h.
Systematic methodologies for digital computer hardware and software designs. VLSI circuits. SOPC, CPLD, and FPGA designs. Hardware description languages.

Prereq.: ECEN 3733.

ECEN 3741 Electromagnetic Fields 1 3 s.h.

Prereq.: ECEN 2633, prerequisite or concurrent MATH 3705.

ECEN 3742 Electromagnetic Fields 2 3 s.h.

Prereq.: ECEN 3741.

ECEN 3771 Digital and Analog Circuits 1 3 s.h.
Terminal characteristics of electronic devices such as diodes, BJTs (bipolar junction transistors), FETs (field effect transistors), and operational amplifiers. The design of digital circuits with these devices. Basic bias and small-signal models for analog amplifiers. Computer-aided design and analysis.

Prereq.: ECEN 2633.

ECEN 3772 Digital and Analog Circuits 2 3 s.h.
Continuation of ECEN 3771. Bias and signal modeling for amplifier design. Large-signal, small-signal and DC amplifiers. Single-stage, multistage and power amplifiers. Frequency response. Applications with op amps such as amplifiers, comparators, filters, and oscillators. Computer-aided design and analysis.

Prereq.: ECEN 3771.

ECEN 4803 Linear Control Systems 4 s.h.

Prereq.: ECEN 2633, ECEN 3712, MATH 3705, MECH 2620.

ECEN 4803L Linear Control Systems Laboratory 0 s.h.
Linear Control Systems Laboratory.
ECEN 4811 Senior Laboratory 1 s.h.
Laboratory experiments and computer exercises in the areas of applied
electromagnetics, energy conversion. Designed to accompany the co-requisite
course.
Prereq.: ECEN 3712.
Prereq. or concurrent: ECEN 4844.

ECEN 4844 Electromagnetic Energy Conversion 3 s.h.
An examination of lumped electromagnetic parameters with development of
theoretical, experimental, and design parameters for electrical energy
conversion devices such as transformers, motors, and generators. Typical and
special applications.
Prereq.: ECEN 3741 or concurrent: MECH 2620.

ECEN 4851 VLSI System Design 3 s.h.
Basic MOSFET models. Layout of inverters, NAND, NOR, PLA, PAL and ROMs.
CMOS process and design rules. VLSI system design methodology and
computer EDA tools such as PSpice and layout editors.
Prereq.: ECEN 3771, ECEN 3733.

ECEN 4852 Neural Networks and Robotics 3 s.h.
Principles for control applications and robotics, direct inverse control, neural
networks, and fuzzy set theory. Applications including adaptive control, neural
networks for motion control and path planning in robotics.
Prereq.: ECEN 3733.

ECEN 4854 Principles of Electromagnetic Compatibility 3 s.h.
Review of electromagnetische theories. Techniques of electromagnetic
compatibility in electronic systems and computer hardware. Modeling and
simulation of transmission lines and circuits. Electromagnetic discharge and
grounding problems for high-frequency applications. Radio-frequency
emissions from electronic devices. Shielding techniques to prevent ESD and
EMI.
Prereq.: ECEN 3742 and MATH 3705.

ECEN 4855 Advanced Digital Control 3 s.h.
Fundamentals of sampled linear control systems, digital controllers and
observers. Analysis techniques including difference and state-variable
equations, transfer functions, transforms. Sampling, stability, and discrete
approximation.
Prereq.: ECEN 3733.

ECEN 4856 Embedded System Design 4 s.h.
Fundamentals of small-scale and medium-scale embedded systems.
Design techniques for processors, timers, input device interfacing, interrupt
controllers, and drive circuits. Real-time operating system programming tools.
Hardware-software co-designs. Three hours lecture, three hours laboratory.
Prereq.: ECEN 3733.

ECEN 4881 Modern Control System Design 3 s.h.
Advanced control system analysis and design. LQR, pole placement, state
observer design. Introduction to system identification and adaptive controllers.
MATLAB simulation and real-time implementation of controllers. Three hours
lecture, three hours laboratory per week.
Prereq.: ECEN 4803.

ECEN 4899 Senior Design Project 4 s.h.
An electrical/computer engineering design problem is chosen or assigned;
students work in teams. Proposals are presented which describe the design
problem and approaches to it. The final design is presented in written and
oral forms. This capstone course is intended to mimic a typical industrial or
research project and includes ethical and economical considerations with the
engineering work. Three hour lecture/discussion, three hours of laboratory per
week.
Prereq.: ECEN 4811 and 27 s.h. of ECEN courses.
Gen Ed: Capstone.

ECEN 4899L Senior Design Project Lab 0 s.h.
Senior Design Project Lab.

ECEN 5800 Special Topics 1-3 s.h.
Special topics, new developments in Electrical Engineering. Subject matter,
special prerequisites, and credit hours to be announced in advance of each
offering. May be repeated with different subject matter to a maximum of 6 s.h.
Prereq.: Senior standing in Electrical and Computer Engineering.

ECEN 5807 Advanced Digital and Analog Circuits 3 s.h.
Chip circuitry for devices such as BJTs, CMOS, and ECL-based digital logic
chips. Switching devices such as SCRs, triacs, and timers. Switching power
supplies. Power amplifiers. Applications and specifications of off-the-shelf IC
devices. Computer-aided design and analysis.
Prereq.: ECEN 3772.

ECEN 5808 Advanced Signals and Systems 3 s.h.
Communication and control system modeling and simulations; signal
analysis in continuous-time, discrete-time and frequency domains. Advanced
communication system applications.
Prereq.: ECEN 3710 and MATH 3705.

ECEN 5816 Theory and Fabrication of Solid-State Devices 3 s.h.
An introductory study of physical theory, design, and fabrication of discrete
devices and integrated circuits. Electronic properties of semiconductors
such as carrier concentration, energy gap, mobility, lifetime. Techniques of
fabrication such as oxidation, diffusion, alloying ion implantation,
metalization, masking.
Prereq.: ECEN 3741 and ECEN 3771.

ECEN 5817 Sensor Design and Application 3 s.h.
Designs and applications for measurement and control; includes electro-
chemical, -mechanical, -optical, and -thermal transducers. Signal conditioning
and smart sensors.
Prereq.: ECEN 3771 or ECEN 3717.

ECEN 5830 Digital Signal Processing 3 s.h.
Discrete time signals and systems, discrete, fast, and inverse Fourier
transforms. Digital filter analysis and design, digital signal processing
applications. Two hours lecture, three hours laboratory.
Prereq.: ECEN 3710.

ECEN 5835 Computer Architecture with VHDL 4 s.h.
Use of hardware description languages to design computer components and
systems. Arithmetic and logic units, control units, VHDL models for memories
and busses, interfacing, transfer design. Survey of modern computer systems.
Prereq.: ECEN 3734.

ECEN 5840 Electric Power Systems 4 s.h.
Modeling of power system components. Power flow, faults, protection
systems, and stability problems. Special projects and laboratory experiments
including CAD applications for analysis, design, and simulation of power
system networks. Three hours lecture, three hours laboratory per week.
Prereq. or concurrent: ECEN 4844.

ECEN 5850 Communications Applications 3 s.h.
Applicable technologies and "real-world" communication components and
systems. Design and analysis tools. Emerging technologies, "killer apps",
networking, data acquisition, and convergence.
Prereq.: ECEN 3710 or ECEN 5808.

ECEN 5860 Fundamental of Antenna Design and Application 3 s.h.
Examination of dipole, loop aperture, and microstrip antennas; array theory;
radiation resistance, directivity, equivalent circuits, input impedance, and basic
transceiver architecture. Investigation of practical applications of antennas
and arrays in communications systems, radar systems and airborne navigation
systems.
Prereq.: ECEN 3742 grade of "C" or better and 21 s.h. of ECEN courses.

ECEN 5879 Computer-Aided Design 3 s.h.
The design, analysis, and modeling of linear and nonlinear networks and
systems using a simulation and modeling computer program. Development
and use of library models of devices, subcircuits, and subsystems.
Prereq.: ECEN 2611 and 21 s.h. of ECEN courses.
ECEN 5890 Power Electronics 4 s.h.
SCRs, rectifier circuits, commutation techniques, AC controllers, converters, and inverters. Special projects and laboratory experiments including computer applications for analysis, design, and simulation of power electronics network. Three hours lecture, three hours laboratory per week.
Prereq.: ECEN 3771 and 21 s.h. of ECEN courses.